cullenking
today at 5:51 AM
We do something similar for some limited geospatial search using elastic search. We make a set of h3 indexes for each of the hundreds of millions of gps recordings on our service, and store them in elastic search. Geospatial queries become full text search queries, where a point is on the line if the set of h3 indexes contains the point. You can do queries on how many cells overlap, which lets you match geospatial tracks on the same paths, and with ES coverage queries, you can tune how much overlap you want.
Instead of using integers IDs for the hexes, we created an encoded version of the ID that has the property that removing a character gets you the containing parent of the cell. This means we can do basic containment queries by querying with a low resolution hex (short string) as a prefix query. If a gps track goes through this larger parent cell, the track will have hexes with the same prefix. You don’t get perfect control of distances because hexes have varying diameters (or rather the approximation, since they aren’t circles they are hexes), but in practice and at scale for a product that doesn’t require high precision, it’s very effective.
I think at the end of this year we’ll have about 6tb of these hex sets in a four node 8 process ES cluster. Performance is pretty good. Also acts as our full text search. Half the time we want a geo search we also want keyword / filtering / etc on the metadata of these trips.
Pretty fun system to build, and the concept works with a wide variety of data stores. Felt like a total hack job but it has stood the test of time.
Thanks uber, h3 is a great library!
jillesvangurp
today at 6:27 AM
Elastisearch and Opensearch have a built in geo_shape type that is a bit more optimal for queries like this.
Before that existed (pre 1.0 actually), I did something similar with geohashes, which are similar to h3 but based on simple string encoded quad trees. I indexed all the street segments in openstreetmap with that (~800 million at the time) and implemented a simple reverse geocoder. Worked shockingly well.
The geo_shape type uses a bkd tree in binary format. It's heavily optimized for this type of intersects/overlaps queries at scale. Basically does the same thing but using a lot less disk space and memory. It's similar to what you would find in proper GIS databases. Elasticsearch/opensearch also support h3 and geohash grid aggregations on top of geo_shape or geo_point types.
I'm guessing the author is using something like postgresql which of course has similar geospatial indexing support via post gis.
Very cool! And the prefix queries you mention are what I was trying to get at in another comment, but you explained it better :)